Abstract
Netrins are a family of proteins that mediate axonal guidance in the central nervous system (CNS). In addition to the CNS, netrins are involved in cell adhesion, motility, proliferation, differentiation, and survival. Because these processes occur in the placenta, we raised the question of whether netrin-1 is expressed by placental cells during development. In the present study, we analyzed the spatial and temporal distribution of netrin-1 and its two receptors, DCC (deleted in colorectal cancer) and UNC5B (uncoordinated-5 homolog) in human placenta using RT-PCR, Western blotting, and immunohistochemistry analysis. We demonstrated the presence of the proteins and transcripts of netrin-1 and its receptors in placenta and cytotrophoblasts. Furthermore, using immunohistochemistry, we localized endogenous netrin-1 protein staining to villous and extravillous cytotrophoblasts, and secreted netrin-1 outside the syncytiotrophoblasts. The DCC receptor was localized to syncytiotrophoblasts and invasive extravillous cytotrophoblasts during the first trimester and at term. On the other hand, the UNC5B receptor was localized to villous and extravillous cytotrophoblasts proximal to anchoring areas during the first trimester. At term, UNC5B was observed in decidual cells and weakly in extravillous cells. The discrete pattern of netrin-1 and netrin-1 receptor distribution suggested that netrin-1 protein functions might vary with its localization in the placenta and probably with time of gestation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.