Abstract

T25 is one of the 4 maize transformation events from which commercial lines have so far been authorized in Europe. It was created by polyethylene glycol-mediated transformation using a construct bearing one copy of the synthetic pat gene associated with both promoter and terminator of the 35S ribosomal gene from cauliflower mosaic virus. In this article, we report the sequencing of the whole T25 insert and the characterization of its integration site by using a genome walking strategy. Our results confirmed that one intact copy of the initial construct had been integrated in the plant genome. They also revealed, at the 5' junction of the insert, the presence of a second truncated 35S promoter, probably resulting from rearrangements which may have occurred before or during integration of the plasmid DNA. The analysis of the junction fragments showed that the integration site of the insert presented high homologies with the Huck retrotransposon family. By using one primer annealing in the maize genome and the other in the 5' end of the integrated DNA, we developed a reliable event-specific detection system for T25 maize. To provide means to comply with the European regulation, a real-time PCR test was designed for specific quantitation of T25 event by using Taqman chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.