Abstract

Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently needed for the sustainable development of Nile tilapia aquaculture. In this study, mesoporous silica nanoparticles (MSNs) were fabricated using sol–gel synthesis technology, and the antigens of surface immunogenic protein (Sip) was loaded into MSNs to develop a nanovaccine MSNs-Sip@HP55. The results showed that the prepared nanovaccine exhibited pH-controlled release, which could survive in the simulated gastric environment (pH 1.5), and release antigens in the simulated intestinal environment at pH 7.4. The nanovaccine could induce innate and adaptive immune responses in Nile tilapia. When the challenge doses were 1.5 × 106, 1.18 × 106, and 0.88 × 106 CFU/mL, the relative protection rates in immunized Nile tilapia were 63.33 %, 64.23 %, and 76.31 %, respectively. Taken together, the nanovaccine exhibited a high antigen utilization rate and was easily administered orally via feeding, which could protect Nile tilapia against challenge with S. agalactiae in large-scale farms. Oral vaccine based on MSNs carriers is a potentially promising strategy for the development of fish vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.