Abstract
Alginate lyases (EC 4.4.2.3/4.4.2.11) have been applied to produce alginate oligosaccharides, which have physiological advantages such as prebiotic and antidiabetic effects, and are of benefit in the food and pharmaceutical industries. Extracellular production of recombinant proteins in Escherichia coli presents advantages including simplified downstream processing and high productivity; however, the presence of certain signal peptides does not always ensure successful secretion, which make the extracellular production of alginate lyase in E. coli rarely reported but of great significance. A PL7 family alginate lyase, Aly01, with its native signal peptide from Vibrio natriegens SK42.001, was identified, characterized, and extracellularly expressed in E. coli. The enzyme specifically released trisaccharide from alginate and was strictly NaCl activated. Green fluorescent protein (GFP) was fused with the Aly01 signal peptide and successfully secreted in E. coli to expand the feasibility of using this signal peptide to produce other heterologous proteins extracellularly. Through a synergistic strategy of utilizing Terrific Broth (TB) medium supplemented with 120 mmol L-1 glycine and 10 mmol L-1 calcium, the lag phase of protein secretion was reduced to 3 h from 12 h; meanwhile calcium remedied glycine-related cell growth impairment, leading to further enhancement of overall enzyme productivity, reaching a maximum of 4.55 U mL-1 . A new salt-activated alginate lyase, Aly01, was identified and characterized. E. coli employed its signal peptide and extracellularly expressed both Aly01 and a GFP, which indicated the signal peptide of Aly01 could be a powerful tool for extracellular production of other heterologous proteins in E. coli. © 2021 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.