Abstract

BackgroundThe discovery of thermostable DNA polymerases such as Taq DNA polymerase revolutionized amplification of DNA by polymerase chain reaction methods that rely on thermal cycling for strand separation. These methods are widely used in the laboratory for medical research, clinical diagnostics, criminal forensics and general molecular biology research. Today there is a growing demand for on-site molecular diagnostics; so-called ‘Point-of-Care tests’. Isothermal nucleic acid amplification techniques do not require a thermal cycler making these techniques more suitable for performing Point-of-Care tests at ambient temperatures compared to traditional polymerase chain reaction methods. Strand-displacement activity is essential for such isothermal nucleic acid amplification; however, the selection of DNA polymerases with inherent strand-displacement activity that are capable of performing DNA synthesis at ambient temperatures is currently limited.ResultsWe have characterized the large fragment of a DNA polymerase I originating from the marine psychrophilic bacterium Psychrobacillus sp. The enzyme showed optimal polymerase activity at pH 8–9 and 25–110 mM NaCl/KCl. The polymerase was capable of performing polymerase as well as robust strand-displacement DNA synthesis at ambient temperatures (25–37 °C). Through molecular evolution and screening of thousand variants we have identified a single amino-acid exchange of Asp to Ala at position 422 which induced a 2.5-fold increase in strand-displacement activity of the enzyme.Transferring the mutation of the conserved Asp residue to corresponding thermophilic homologues from Ureibacillus thermosphaericus and Geobacillus stearothermophilus also resulted in a significant increase in the strand-displacement activity of the enzymes.ConclusionsSubstituting Asp with Ala at positon 422 resulted in a significant increase in strand-displacement activity of three prokaryotic A-family DNA polymerases adapted to different environmental temperatures i.e. being psychrophilic and thermophilic of origin. This strongly indicates an important role for the 422 position and the O1-helix for strand-displacement activity of DNA polymerase I. The D422A variants generated here may be highly useful for isothermal nucleic acid amplification at a wide temperature scale.

Highlights

  • The discovery of thermostable DNA polymerases such as Taq DNA polymerase revolutionized amplification of DNA by polymerase chain reaction methods that rely on thermal cycling for strand separation

  • Various A-family DNA polymerases are extensively used for in vitro amplification of DNA in molecular biology and diagnostic applications [3, 4], exemplified by the Taq DNA polymerase which is famous as the enzyme originally used in polymerase chain reaction (PCR, [5])

  • The effect of pH, salt (NaCl, KCl) and Mg2+ on the polymerase activity were determined for PB pol I large fragment (LF) using a time-resolved polymerase activity assay with a molecular beacon substrate

Read more

Summary

Introduction

The discovery of thermostable DNA polymerases such as Taq DNA polymerase revolutionized amplification of DNA by polymerase chain reaction methods that rely on thermal cycling for strand separation. These methods are widely used in the laboratory for medical research, clinical diagnostics, criminal forensics and general molecular biology research. Isothermal nucleic acid amplification techniques do not require a thermal cycler making these techniques more suitable for performing Point-of-Care tests at ambient temperatures compared to traditional polymerase chain reaction methods. Various A-family DNA polymerases are extensively used for in vitro amplification of DNA in molecular biology and diagnostic applications [3, 4], exemplified by the Taq DNA polymerase which is famous as the enzyme originally used in polymerase chain reaction (PCR, [5]). Gbst pol I LF is able to perform strand displacement (SD) where the complement strand downstream of the polymerization direction is displaced simultaneously with nucleotide addition

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call