Abstract

Glycosylation is a method that enhances the functional properties of proteins by covalently attaching sugars to them. This study aimed at preparing three conjugates (WP-HG, WP-SBP, and WP-RGI) by dry heating method to research the influence of different pectin structures on the functional properties of WP and characterize properties and structures of these conjugates. The research results manifested that the degree of glycosylation (DG) of HG, SBP and RGI were 13.13 % ± 0.07 %, 23.27 % ± 0.3 % and 36.39 % ± 0.3 % respectively, suggesting that the increase of the number of branch chains promoted the glycosylation reaction. The formation of the conjugate was identified by the FT-IR spectroscopy technique. And SEM showed that WP could covalently bind to pectin, resulting in a smoother and denser surface of the conjugates. The circular dichroism analysis exhibited that the glycosylation reaction altered the secondary structure of WP and decreased the α-Helix content. This structural change in the protein spatial conformation led to a decrease in the hydrophobicity of protein surface. But the addition of pectin further regulated the hydrophilic-hydrophobic ratio on the surface of the protein, thus improving the emulsification properties of WP. In addition, the glycosylation could improve the stability of the emulsion, giving it a smaller droplet size, higher Zeta-potential and more stable properties. In a word, this study pointed out the direction for the application of different pectin structures in the development of functional properties of glycosylation products in food ingredients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call