Abstract
The reaction of the phosphonium alkylidene [(H(2)IMes)RuCl(2)=CHP(Cy)(3))](+) BF(4)(-) with propene, 1-butene, and 1-hexene at -45 °C affords various substituted, metathesis-active ruthenacycles. These metallacycles were found to equilibrate over extended reaction times in response to decreases in ethylene concentrations, which favored increased populations of α-monosubstituted and α,α'-disubstituted (both cis and trans) ruthenacycles. On an NMR time scale, rapid chemical exchange was found to preferentially occur between the β-hydrogens of the cis and trans stereoisomers prior to olefin exchange. Exchange on an NMR time scale was also observed between the α- and β-methylene groups of the monosubstituted ruthenacycle (H(2)IMes)Cl(2)Ru(CHRCH(2)CH(2)) (R = CH(3), CH(2)CH(3), (CH(2))(3)CH(3)). EXSY NMR experiments at -87 °C were used to determine the activation energies for both of these exchange processes. In addition, new methods have been developed for the direct preparation of metathesis-active ruthenacyclobutanes via the protonolysis of dichloro(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(benzylidene) bis(pyridine)ruthenium(II) and its 3-bromopyridine analogue. Using either trifluoroacetic acid or silica-bound toluenesulfonic acid as the proton source, the ethylene-derived ruthenacyclobutane (H(2)IMes)Cl(2)Ru(CH(2)CH(2)CH(2)) was observed in up to 98% yield via NMR at -40 °C. On the basis of these studies, mechanisms accounting for the positional and stereochemical exchange within ruthenacyclobutanes are proposed, as well as the implications of these dynamics toward olefin metathesis catalyst and reaction design are described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.