Abstract
We report the characterization and determination of 2,6-dichloro-1,4-benzoquinone and three new disinfection byproducts (DBPs): 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, and 2,6-dibromo-1,4-benzoquinone. These haloquinones are suspected bladder carcinogens and are likely produced during drinking water disinfection treatment. However, detection of these haloquinones is challenging, and consequently, they have not been characterized as DBPs until recently. We have developed an electrospray ionization tandem mass spectrometry technique based on our observation of unique ionization processes. These chloro- and bromo-quinones were ionized through a reduction step to form [M + H](-) under negative electrospray ionization. Tandem mass spectra and accurate mass measurements of these compounds showed major product ions, [M + H - HX](-), [M + H - HX - CO](-), [M + H - CO](-), and/or X(-) (where X represents Cl or Br). The addition of 0.25% formic acid to water samples was found to effectively stabilize the haloquinones in water and to improve the ionization for analysis. These improvements were rationalized from the estimates of pK(a) values (5.8-6.3) of these haloquinones. The method of tandem mass spectrometry detection, combined with sample preservation, solid phase extraction, and liquid chromatography separation, enabled the detection of haloquinones in chlorinated water samples collected from a drinking water treatment plant. The four haloquinones were detected only in drinking water after chlorination treatment, with concentrations ranging from 0.5 to 165 ng/L, but were not detectable in the untreated water. This method will be useful for future studies of occurrence, formation pathways, toxicity, and control of these new halogenated DBPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.