Abstract

Due to the ecotoxicity of 17β-estradiol (E2), residual E2 in the environment poses potential risks to human and animal health and ecosystems. Biodegradation is considered one of the most effective strategies to remove E2 from the environment. Here, a novel, efficient E2-degrading bacterial strain Microbacterium resistens MZT7 was isolated from activated sludge and characterized. The genome of strain MZT7 contained 4,011,347 bp nucleotides with 71.26% G + C content and 3785 coding genes. There was 86.7% transformation efficiency of 10 mg/L E2 by strain MZT7 after incubation for 5 d at optimal temperature (30 °C) and pH (7.0). This strain was highly tolerant to ranges in pH (5.0–11.0), temperature (20–40 °C), and salinity (2–8%). Adding sources of carbon (glucose, maltose, sucrose, or lactose) or nitrogen sources (urea, peptone, or beef extract) promoted the degradation of E2 by strain MZT7. However, when yeast extract was added as a nitrogen source, the degradation efficiency of E2 was inhibited. Metabolites were analyzed by LC-MS and three metabolic pathways of E2 degradation were proposed. Further, the intermediates dehydroepiandrosterone and androsta-1,4-diene-3,17-dione were detected, as well as identification of kshB and fadD3 genes by KEGG, confirming one E2 degradation pathway. This study provided some insights into E2 biodegradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.