Abstract

Although biodegradable polymers have found extensive applications in medical areas, there are limited reports that show elastomeric behavior. In this work, a biodegradable, elastomeric polymer is demonstrated from a four-armed star copolymer. With a fixed middle core composition, comprising caprolactone (CL) and L-lactide (LA), an elastomer is obtained by increasing the polylactide (PLA) end block lengths to obtain sufficient end block crystallinity. This increase suppressed the middle core's crystallinity yet ensured cocrystallization of the PLA ends of individual star copolymer chains to form a three-dimensional network via physical crosslinking. Cyclic and creep test of the star copolymers showed that at least 75% of recovery was achieved. Degradation study of the copolymer showed that degradation first occurred in the caprolactone-co-lactide (CLLA) core, followed by degradation in the PLA ends. Chain scission in the middle core resulted in immediate formation of CL crystals within the core and increased crystallinity over time, in both CLLA core and PLA ends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.