Abstract

AbstractDeposited dust represents a nutritional niche for microflora. Inhibiting microflora-associated deposited dust is a critical approach to manage cultural heritage buildings. Knowledge on the effectiveness of commercial disinfection on microflora in a real field environment is limited. The present study aims to: (1) characterize deposited dust composition, and (2) assess the effectiveness of several commercial biocides/and an air ionizer on microflora-associated floor surface and air before and after treatment. Deposited dust was collected using a dust collector and microbial air sampling was conducted via a volumetric impactor sampler. Susceptibility of microorganisms to biocide/ionizer was performed in a naturally ventilated unoccupied room with a floor area of 18 m2. One-treatment protocol, a daily disinfection mode, was applied to each biocide/ionizer. The surface floor was adjacently sprayed by a biocide, and the ionizer was turned on for 30 min. Indoor deposited dust rates varied between 0.75 and 8.7 mg/m2/day with indoor/outdoor ratio of ~ 1:100. Ion concentrations of NH4+, Cl−, SO42− and NO3− were higher indoor than outdoor. The concentration of microorganisms-associated deposited dust averaged 106 CFU/g; 105 CFU/g and 104 CFU/g for bacteria, fungi and actinomycetes, respectively. A total of 23 fungal taxa were identified, with Aspergillus flavus, Asp. fumigatus and Asp. niger were the predominant taxa. Biocides quickly reduced floor surface and airborne microbial loads. The biocidal effect was time limited, as microflora loads increased again after ~ 4 days of the treatment protocol. Benzalkonium chloride (BAC) out-performed other biocides, showed a relatively permanent microbial inhibiting effect. The air ionizer reduced airborne microorganisms and increased surface floor ones. Characterizing of deposited dust (rate and composition) and choice an appropriate biocide may effectively reduce biodeterioration. Further real field treatment trials under various microenvironmental conditions are needed to determine the effectiveness of disinfection treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call