Abstract

Magnesium has been suggested as a potential biodegradable metal for the usage as orthopaedic implants. However, high degradation rate in physiological environment remains the biggest challenge, impeding wide clinical application of magnesium‐based biomaterials. In order to reduce its degradation rate and improve the biocompatibility, micro‐arc oxidation coating doped with HA particles (MAO‐HA) was applied as the inner coating, and polydopamine (PDA) film was synthesized by dopamine self‐polymerization as the outer coating. The microstructure evolution of the coating was characterized using scanning electron microscopy (SEM), atomic force microscope (AFM), X‐ray diffraction analyses (XRD), Fourier transform infrared spectroscopy (FT‐IR), and X‐ray photoelectron spectroscopy (XPS). The results showed that PDA film had covered the entire surface of MAO‐HA coating and the pore size of MAO‐HA coating decreased. The root mean square (RMS) roughness of PDA/MAO‐HA coatings was approximately 106.46 nm, which was closer to the optimum surface roughness for cellular attachment as compared with MAO‐HA coatings. Contact angle measurement indicated that the surface wettability had been transformed from hydrophobic to hydrophilic due to the introduction of PDA. The PDA/MAO‐HA coatings exhibited better corrosion resistance in vitro, with the self‐corrosion potential increasing by 150 mV and the corrosion current density decreasing from 2.09 × 10−5 A/cm2 to 1.46 × 10−6 A/cm2. In hydrogen evolution tests, the corrosion rates of the samples coated with PDA/MAO‐HA and MAO‐HA were 4.40 and 5.95 mm/y, respectively. MTS assay test and cell‐surface interactions experiment demonstrated that PDA/MAO‐HA coatings exhibited good cellular compatibility and could promote the adhesion and proliferation of MC3T3‐E1 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call