Abstract
A biodegradable hydroxyapatite/graphene oxide bio-composite (HA/GO) coating has been fabricated on magnesium (Mg) alloy by a convenient one-step method of micro-arc oxidation (MAO) for biodegradable implants. The microstructure and phase constituents of the obtained powders and coatings were characterized by XRD, SEM, TEM, FT-IR, XPS and the corrosion resistance in vitro has been investigated by electrochemical measurements in simulated body fluid (SBF). The results suggested that HA/GO powder has been successfully prepared and filled into the discharging pores of the coating during MAO process. The electrochemical measurements in SBF indicated that the corrosion current of Mg substrate has been significantly decreased by the HA/GO coating. Furthermore the EIS measurement suggested that the HA/GO coating more effectively inhibited the Mg substrate from corrosion compared to pure MAO coating. These results suggested that HA/GO coating on Mg alloy could be a promising candidate for biomedical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.