Abstract

To explore the microbial diversity and flavor profiles of stinky acid, we utilized high-throughput sequencing, culture-based techniques, and bionic E-sensory technologies. The results revealed a significant correlation between the acidity levels of stinky acid and the richness of its microbial community. Ten core bacterial genera and three core fungal genera exhibited ubiquity across all stinky acid samples. Through E-nose analysis, it was found that sulfides constituted the principal odor compounds responsible for stinky acid's distinct aroma. Further insights arose from the correlation analysis, indicating the potential contribution of Debaryomyces yeast to the sour taste profile. Meanwhile, three genera—Rhizopus and Thermoascus and Companilactobacillus—were identified as contributors to aromatic constituents. Interestingly, the findings indicated that Rhizopus and Thermoascus could reduce the intensity of the pungent odor of stinky acid. In summary, this investigation's outcomes offer new insights into the complex bacterial diversity of stinky acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call