Abstract

Microbes in epiphytic biofilms and surface sediments play crucial roles in the biogeochemical cycles in wetlands. However, little is known about the compositions of microbial community in wetlands dominated with submersed macrophytes. In this study, bacterial and eukaryotic community in epiphytic biofilms and surface sediments were investigated in wetlands with artificial plants and Myriophyllum verticillatum from September (~27°C) to January (~9°C). A total of 30 (including 13 bacterial and 17 eukaryotic) and 34 (including 14 bacterial and 20 eukaryotic) phyla were detected in epiphytic biofilms and sediments, respectively. Microbial community in epiphytic biofilms shifted with decreasing temperature, and biofilms on M. verticillatum were generally similar to those on artificial plants. Though the OTUs and Shannon values were significantly higher in sediments than epiphytic biofilms (p<0.05), numbers of strongly correlated edges detected in biofilms (64 nodes with 182 edges) were at least three times of those in sediments (40 nodes with 57 edges) as revealed by co-occurrence networks analysis (|r|>0.7, p<0.05). These data suggest that there were complex interactions among microbes in epiphytic biofilms than sediments. Positive relationships among microbes revealed the predation, symbiosis, parasitism relationships and the collective degradation of organic matter, while negative ones may be ascribed to their different lifestyles. These results highlight that artificial plants play a similar role as submersed macrophytes as microbial carriers and can be potentially used an alternative substitutes to submersed macrophytes in wetlands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call