Abstract

Hydroxyethyl starch (HES) has been proposed as a biodegradable polymer for shielding of DNA polyplexes, where the feasibility of this approach was shown both in vitro and in vivo. In this study, we report on the physicochemical characterization, the in vitro cytocompatibility and hemotoxicity of HES-decorated polyplexes. For this purpose, various HES molecules were coupled to a 22 kDa linear polyethylenimine (LPEI22) to produce a library of nine different HES–PEI conjugates. Particle analysis using dynamic light scattering showed that, neither the molar mass of HES nor the amount of HES in the polyplexes affected the particle diameter, as it was consistently around 70–80 nm. Imaging using atomic force microscopy and transmission electron microscopy showed that, both naked and HESylated polyplexes were in the same size range and had a spherical morphology. Meanwhile, the HES-mediated particle-shielding effect, manifested as reduction in the surface charge, strongly correlated with the molar mass of HES, where the charge decreased linearly with the increase in molar mass. Ethidium bromide binding assay showed that HES–PEI did not negatively affect DNA condensation at N/P ratios higher than 4. HES conjugation also showed a stabilizing effect against salt-induced particle disassembly, and particle aggregation in protein-containing media. Compatibility tests included cellular viability, as well as erythrocyte aggregation and hemolysis assays. HES–PEI conjugates showed lower cytotoxicity, no aggregation, and much lower hemolysis compared to unmodified PEI. In conclusion, these results show that the HES–PEI conjugates are promising gene delivery polymers with favorable physicochemical properties and compatibility profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call