Abstract

This paper presents three different microfabrication technologies for manufacturing out-of-plane, flat-bottomed, undercut trapezoidal structures for generating a fluidic microscale vortex (microvortex). The first method is based on anisotropic silicon etching and a ‘sandwich’ UV polymer casting assembly; the second method uses a backside diffuser photolithography technique; and the third method features a tilted backside photolithography technique. We discuss the advantages, limitations, and utility of each technique. We further demonstrate that the microvortex generated in the resultant undercut trapezoidal structures can be used to rotate biological microparticles, e.g. single, live cells for multiperspective, high resolution 3D imaging using computed tomography, and angularly resolved confocal imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.