Abstract
Since simian immunodeficiency virus (SIV) was found to be the source of the human AIDS pandemic, a major goal has been to characterize the diversity of SIV strains in the wild and to assess their potential for crossover into humans. In the present study, SIV was isolated from a seropositive drill (Mandrillus leucophaeus) and three seropositive mandrills (Mandrillus sphinx) by using macaque peripheral blood mononuclear cells (PBMC). Full-length sequences were obtained from a drill and mandrill and designated SIVdrl1FAO and SIVmnd5440, respectively. A 182-bp fragment of the pol genes of the two remaining mandrill SIV isolates was also analyzed. Phylogenetic analyses demonstrated that SIVdrl1FAO formed a monophyletic clade with SIVmnd5440 and SIVmndM14, recently designated SIVmnd type 2. Both the SIVdrl and SIVmnd type 2 genomes carried a vpx gene and appeared to share a common ancestor with SIVrcm in the 5' region of the genome and with SIVmndGB1 (type 1) in the 3' region of the genome. A statistically significant recombination breakpoint was detected at the beginning of envelope, suggesting that the viruses were descendents of the same recombinant. Phylogenetic analysis of vpx and vpr genes demonstrated that the vpx genes formed a monophyletic cluster that grouped with vpr from SIVagm. In addition, both SIVdrl1FAO and SIVmnd5440 replicated in human PBMC and therefore could pose a risk of transmission to the human population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.