Abstract

Departure from normal circadian rhythmicity and exposure to atypical lighting cues has been shown to adversely affect human health and wellness in a variety of ways. In contrast, adaptation to extreme environments has led many species to alter or even entirely abandon their reliance upon cyclic environmental inputs, principally daily cycles of light and darkness. The extreme darkness, stability and isolation of cave ecosystems has made cave-adapted species particularly attractive systems in which to study the consequences of life without light and the strategies that allow species to survive and even thrive in such environments. In order to further explore these questions, we have assessed the rhythmicity of locomotion in the blind Mexican tetra, Astyanax mexicanus, under controlled laboratory conditions. Using high-resolution video tracking assays, we characterized patterns in locomotor activity and spatial tank usage for members of the surface and Pachón cave populations. Here we demonstrate that cavefish have a higher overall level of activity and use the space within the trial tank differently than surface fish. Further, Pachón cavefish show circadian rhythmicity in both activity and spatial tank usage under a 12:12 light/dark cycle. We provide further evidence that these cavefish retain a weakly light-entrainable, endogenous circadian oscillator with limited capability to sustain rhythms in activity, but not spatial tank usage, in the absence of photic cues. Finally, we demonstrate a putative behavioral “masking effect” contributing to behavioral rhythms and provide evidence that exposure to constant darkness during development may alter behavioral patterns later in life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call