Abstract

A Bacillus subtilis gerC spore germination mutant demonstrating a temperature-sensitive response to L-alanine as germinant has been characterized in detail. The gerC58 mutation is 50% cotransformed with aroB in the gene order gerC-aroB-trpC. The mutation is responsible for a severe growth defect which is manifest at all growth temperatures and is most extreme on rich media. A second, unlinked, mutation in the original strain suppressed this growth defect, but spores of the suppressed strain failed to germinate in alanine at 42 degrees C. As this germination defect is dependent on the presence of the gerC58 allele, it is likely to be the direct result of a mutant gerC protein. The gerC gene therefore appears to have a role in both spore germination and vegetative cell growth. A gene library of BclI-digested B. subtilis chromosomal DNA was constructed in phage vector phi 105J27. A derivative containing the gerC region was obtained by complementation of the growth defect of an unsuppressed gerC58 strain. This phage contained a 6.3 kb insert of bacterial DNA, which is above the reported packaging limit of the phage. It failed to form visible plaques, although it could be handled as a prophage and sufficient phage particles be isolated to allow characterization of the insert. A deletion derivative generated in vitro and carrying only 2.9 kb of insert DNA also complemented the gerC defect. This gerC locus is the second locus to be implicated in alanine-stimulated germination. The first, gerA, is a developmentally controlled operon whose gene products are present only in the spore. This study of gerC, in contrast, reveals a role in spore germination for a normally essential vegetative protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.