Abstract

Abstract The interaction between submonolayer titania coverages and Pt foil has been studied by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). The submonolayer titania can be fully oxidized to TiO 2 at 923 K under 10 −8 Torr O 2 , and partially oxidized to TiO x at lower oxidation temperatures. The oxidized surface can be reduced by annealing to 1000 K or higher, or by heating in H 2 at 823 K, or by interacting with surface carbon formed from acetone decomposition. Under certain conditions (e.g., hydrogen reduction at 923 K), the surface titania can be fully reduced to metallic Ti which diffuses into bulk Pt readily. The reduced metallic Ti can resurface when the surface is oxidized at 923 K. Both XPS and HREELS data indicate the existence of subsurface oxygen, which plays an important role for the diffusion of Ti into and out of the Pt foil. Although no special interfacial active sites were revealed by HREELS studies of adsorbed acetone and CO, some TPD and XPS data suggest the presence of sites active for acetone decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.