Abstract

High luminescence quantum yield water-soluble CdTe/ZnS core/shell quantum dots (QDs) stabilized with thioglycolic acid were synthesized. QDs were chemically coupled to fully humanized antivascular endothelial growth factor165 monoclonal antibodies to produce fluorescent probes. These probes can be used to assay the biological affinity of the antibody. The properties of QDs conjugated to an antibody were characterized by ultraviolet and visible spectrophotometry, fluorescent spectrophotometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transmission electron microscopy and fluorescence microscopy. Cell-targeted imaging was performed in human breast cancer cell lines. The cytotoxicity of bare QDs and fluorescent probes was evaluated in the MCF-7 cells with an MTT viability assay. The results proved that CdTe/ZnS QD-monoclonal antibody nanoprobes had been successfully prepared with excellent spectral properties in target detections. Surface modification by ZnS shell could mitigate the cytotoxicity of cadmium-based QDs. The therapeutic effects of antivascular endothelial growth factor antibodies towards cultured human cancer cells were confirmed by MTT assay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call