Abstract
Calmodulin (CaM) is one of the major Ca2+-binding proteins in the cells, and it plays multiple roles in several Ca2+ signaling pathways and regulating the activities of other proteins. In the present study, we characterized CaM genes from the marine dinoflagellates Amphidinium carterae, Cochlodinium polykrikoides, Prorocentrum micans, and P. minimum, and examined their expression patterns upon the addition and chelation of calcium. Their cDNAs had same ORF length (450 bp) and encoded the same protein, but with few nucleotide differences in the ORF and different 3′- and 5′ untranslated regions (UTRs). The four CaM proteins consist of four EF-hand Ca2+-binding motifs, two N-terminal domains and two C-terminal domains, and they were highly conserved within eukaryotes. The CaM gene expressions in the tested species increased by calcium treatments; however, they were significantly down-regulated by the calcium-chelator EGTA. The CaM genes of the test species were inducible and regulated by different calcium doses, suggesting their major role in calcium regulation in dinoflagellates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.