Abstract

Novel hydrogel beads having molecular adsorption abilities were prepared from carboxymethylcellulose sodium salt (CMC) and β-cyclodextrin (β-CD) by suspension crosslinking, using ethylene glycol diglycidyl ether (EGDE) in basic medium as a crosslinking agent. FTIR and solid-state NMR spectroscopic analysis revealed that the amount of incorporated β-CD and crosslinking densities within the hydrogel bead structures are strongly dependent on the molar feed ratio of β-CD to CMC during preparation. The hydrogel beads showed water-swelling capacities of 70–200mL/g-polymer, with decreases in capacity associated with increased amounts of β-CD incorporated in the gel structure. The hydrogel beads also showed a high adsorption capacity toward bisphenol A (BPA) in water. Batch BPA-adsorption experiments were analyzed employing Langmuir isotherm models; hydrogel bead adsorption isotherms for BPA could be fitted to the Langmuir model. The maximum BPA-adsorption among the prepared series of hydrogel beads amounted to 167μmolg−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.