Abstract

Vitamin C nanoliposomes were prepared by combining a conventional method (film evaporation) with dynamic high pressure microfluidization. Their physicochemical characterizations (antioxidant activity, particle size, entrapment efficiency, morphology, in vitro drug release, and storage stability) and skin permeation behavior were investigated. The results showed that vitamin C nanoliposomes, having equivalent DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging capacity of pure vitamin C solution without loss of their biological activity, exhibited better storage stability at 37°C for 24 hours and at 4°C for 60 days, a more excellent sustained drug release as well as higher skin penetration rate than vitamin C liposomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call