Abstract

Grain boundaries (GBs) significantly affect the properties of materials. In an effort to examine the phenomena at GBs, many model boundaries, typically symmetric tilt GBs, have been investigated. However, the geometries of symmetric tilt GBs are too restricted to represent commonly occurring interface phenomena properly in polycrystalline materials. Thus, a method of applying density functional theory (DFT) to asymmetric GBs has long been desired. Here, we present a simple geometric method and a new GB model with two surfaces which make it possible to characterize an asymmetric tilt GB and calculate the GB energetics. Our method can be extended to study other geometric asymmetric interfaces in various materials. The proposed technique thus paves the way for DFT-related studies of asymmetric interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.