Abstract
CRISPR-Cas constitutes the adaptive immune system of bacteria and archaea. This RNA-mediated sequence-specific recognition and targeting machinery has been used broadly for diverse applications in a wide range of organisms across the tree of life. The compact class 2 systems, that hinge on a single Cas effector nuclease have been harnessed for genome editing, transcriptional regulation, detection, imaging and other applications, in different research areas. However, most of the CRISPR-Cas systems belong to class 1, and the molecular machinery of the most widespread and diverse Type I systems afford tremendous opportunities for a broad range of applications. These highly abundant systems rely on a multi-protein effector complex, the CRISPR associated complex for antiviral defense (Cascade), which drives DNA targeting and cleavage. The complexity of these systems has somewhat hindered their widespread usage, but the pool of thousands of diverse Type I CRISPR-Cas systems opens new avenues for CRISPR-based applications in bacteria, archaea and eukaryotes. Here, we describe the features and mechanism of action of Type I CRISPR-Cas systems, illustrate how endogenous systems can be reprogrammed to target the host genome and perform genome editing and transcriptional regulation by co-delivering a minimal CRISPR array together with a repair template. Moreover, we discuss how these systems can also be used in eukaryotes. This review provides a framework for expanding the CRISPR toolbox, and repurposing the most abundant CRISPR-Cas systems for a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.