Abstract

Hepatocytes are one of the most physiologically relevant in vitro liver systems for human translation of clearance and drug-drug interactions (DDI). However, the cell membranes of hepatocytes can limit the entry of certain compounds into the cells for metabolism and DDI. Passive permeability through hepatocytes can be differentin vitro and in vivo, which complicates the human translation. Permeabilized hepatocytes offer a useful tool to probe mechanistic understanding of permeability-limited metabolism and DDI. Incubation with saponin of 0.01% at 0.5 million cells/mL and 0.05% at 5 million cells/mL for 5 min at 37°C completely permeabilized the plasma membrane of hepatocytes, while leaving the membranes of subcellular organelles intact. Permeabilized hepatocytes maintained similarenzymatic activity as intact unpermeabilized hepatocytes and can be stored at -80°C for at least 7 months. This approach reduces costs by preserving leftover hepatocytes. The relatively low levels of saponin in permeabilized hepatocytes had no significant impact on the enzymatic activity. As the cytosolic contents leak out from permeabilized hepatocytes, cofactors need to be added to enable metabolic reactions. Cytosolic enzymes will no longer bepresent if the media are removed after cells are permeabilized. Hence permeabilized hepatocytes with and without media removal may potentially enable reaction phenotyping of cytosolic enzymes. Although permeabilized hepatocytes work similarly as human liver microsomes and S9 fractions experimentally requiring addition of cofactors, they behave more like hepatocytes maintaining enzymatic activities for over 4 h. Permeabilized hepatocytes are a great addition to the drug metabolism toolbox to provide mechanistic insights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.