Abstract

Nanocellulose is an emerging green, biodegradable and biocompatible nanomaterial with negligible toxicities. In this study, a carboxylated nanocellulose (i.e., 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TEMPO-CNF)) was prepared from corn stover and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA). Corn stover-derived TEMPO-CNF was explored as an emulsion co-stabilizer together with Tween 80 for lemongrass essential oil-loaded emulsions. Droplet size, phase behavior and thermodynamic stability of oil-in-water emulsions stabilized by Tween 80 and TEMPO-CNF were investigated. The optimal nanoemulsion stabilized by this binary stabilizer could achieve a mean particle size of 19 nm, and it did not form any phase separation against centrifugal forces, freeze-thaw cycles and at least 30 days of room temperature storage. The nanoencapsulated essential oil had better inhibition activity against the mycelial growth of Aspergillus flavus than pure essential oil. Results from this study demonstrate the potential of using agricultural byproduct-derived nanomaterial as nanoemulsion stabilizers for essential oils with good emulsion thermodynamic stability as well as enhanced antifungal activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call