Abstract

Titanium (Ti)-based materials have been used for dental/orthopedic implants due to their excellent biological compatibility, superior mechanical strength and high corrosion resistance. The osseointegration of Ti implants is related to their composition and surface treatment. Better biocompatibility and anti-bacterial performances of Ti implant are beneficial for the osseointegration and for avoiding the infection after implantation surgery. In this study, nanocomposite ZrCN/amorphous carbon (a-C) coatings with different carbon contents were deposited on a bio-grade pure Ti implant material. A cathodic-arc evaporation system with plasma enhanced duct equipment was used for the deposition of ZrCN/a-C coatings. Reactive gas (N 2) and C 2H 2 activated by the zirconium plasma in the evaporation process were used to deposit the ZrCN/a-C coatings. To verify the susceptibility of implant surface to bacterial adhesion, Actinobacillus actinomycetemcomitans ( A. actinomycetemcomitans), one of the major pathogen frequently found in the dental implant-associated infections, was chosen for in vitro anti-bacterial analyses. In addition, the biocompatibility of human gingival fibroblast (HGF) cells on coatings was also evaluated by a cell proliferation assay. The results suggested that the ZrCN/a-C coatings with carbon content higher than 12.7 at.% can improve antibacterial performance with excellent HGF cell compatibility as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.