Abstract

Bilayer wound dressing systems consisting of various biopolymers have been preferred in biomedical applications due to its enhanced advantages in comparison with conventional systems. The aim of this research was to develop a novel bilayer wound dressing based on gelatin (G) and gellan gum (GG). The bilayer was composed of an upper layer impregnated with antibiotic drug sodium ampicillin and a drug-free lower sponge layer. The bilayer hydrogels were characterized by FTIR, TGA, DSC and SEM analyses including swelling behaviors and hydrolytic degradation tests. To achieve faster healing of the wound by prevention of the bacterial infection, the bilayer hydrogels were developed as antibiotic-releasing vehicles. Herein, release study of sodium ampicillin was performed in PBS to simulate the physiological micro-environment. Additionally, cyto-compatibility tests of L929 fibroblast cells showed the high proliferation and survival through drug-loaded GG and G hydrogels (GG-G-D) after 24h, 48h and 72h incubation. This novel GG-G bilayer hydrogel could be a good candidate as wound dressing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.