Abstract

Thermoplastic composite welding is a key technology that can help to make the aviation industry more sustainable, while at the same time enable high-volume production and cost-efficient manufacturing. In this work, characterization, testing and analysis of thermoplastic composite conduction welded joints is performed while accounting for the influence of the manufacturing process. Test specimens are designed from welds of a half a meter long welding tool that is developed to weld the stiffened structures of the next-generation thermoplastic composite fuselage. In the design, special attention is paid to the weldability of the laminates, while ensuring fracture occurs only at the welded interface. Two specimen configurations are evaluated for the Double Cantilever Beam and End-Notched Flexure characterization tests. Moreover, Single Lap-Shear specimens are tested in tension and in three-point-bending. Finally, the characterized material properties are introduced in finite element analyses to demonstrate that the cohesive zone modeling approach can be used to conservatively predict the strength of these welded joints. New insights are obtained in the relation between the manufacturing process, the quality of the weld and the mechanical properties of the joints, which are significantly different compared to autoclave consolidated composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.