Abstract
Graphite is a critical material used as the negative electrode in lithium-ion batteries. Both natural and synthetic graphites are utilized, with the latter obtained from a range of carbon raw materials. In this work, efforts to synthesize graphite from coal as a domestic feedstock for synthetic graphite are reported. The performance in lithium-ion coin cells of this coal derived graphite is compared to commercial battery-grade graphite. This includes characterization of the thermodynamics of the coal derived graphite using the multi-species, multi-reaction (MSMR) model, characterization of the entropy and enthalpy of the material, and estimation of the rate capability. This enables modeling of synthetic coal-derived graphites and virtual evaluation[1] of these materials towards electric vehicle and grid storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.