Abstract

The catalysts analysed in the current work are variations of MCM-41. The properties of these highly ordered mesoporous aluminosilicates were adjusted by an isomorphous substitution of Si by a trivalent cation, in this case Al3+, generating catalysts of the AlMCM-41 type. The materials were synthesized with a silicon/aluminium ratio of 40, through two methods of impregnation of the metal: conventional and post-synthesis alumination. With the aim of determining the density of the acid sites of the Al40MCM-41 prepared by post-synthesis and conventional alumination, studies of the adsorption of n-butylamine probe molecule were carried out. Further, the studied material was characterized by thermogravimetry measurements, providing the profile of decomposition of the samples, which allowed calculation of the densities of the acid sites. The model-free kinetic algorithms were applied in order to determinate conversion and apparent activation energy. Comparison of energy-dispersive X-ray fluorescence and X-ray photoelectron spectroscopy measurements indicated that the post-synthesis method was more favourable based on the metal positioning, ‘anchored’ in the surface of the catalyst. The textural properties of the calcined Al40MCM-41 prepared by post-synthesis and conventional alumination were characterized by X-ray diffraction, N2 isothermal adsorption measurements (Brunauer–Emmett–Teller and Barrett–Joyner–Halenda), transmission electron microscopy, and X-ray photoelectron spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call