Abstract
Immunization with recombinant HBV vaccine induces specific immune responses in human causing B lymphocytes to produce protective HBsAb, and to form memory B lymphocytes, thereby facilitating HBV immunity in the body. However, B lymphocytes heterogeneity and characteristics are not fully elucidated. In this study, we conducted high-throughput sequencing of BCR heavy chain CDR3 repertoires in 3 healthy volunteers before and after the third immunization with recombinant HBV vaccine. We used Roche 454 Genome Sequencer FLX system to perform a comparative analysis of IgM and IgG H chain CDR3 repertoires. First, we found that the diversity of IgG H chain CDR3 repertoires was 1/6 of IgM on average. Moreover, after the third immunization with HBV vaccine, the diversity of IgG H chain CDR3 repertoires was 1/26 of IgM on average. Second, we detected relatively high levels of HBsAbs in all the healthy volunteers after immunization with HBV vaccine. The volunteers shared a small number of CDR3 sequences before and after immunization, and among each other. However, we did not find completely identical BCR H chain CDR3 amino acid sequences in these volunteers. Lastly, after immunization with recombinant HBV vaccine, the volunteers showed high frequency of IgG H chain CDR3 amino acid sequences mostly resulting from rearrangements of IGHV, IGHD and IGHJ, suggesting that the mechanism of high frequency CDR3 generation might be associated with the maturation of IgG affinity (somatic hypermutation) during the recombinant HBV vaccine-induced B lymphocyte responses. This study identified the characteristics and changes of BCR CDR3 repertoires before and after immunization with HBV vaccine, and evaluated the performance of the sequencing technology for this application. Our findings provide a basis for further research in B lymphocyte generated HBsAb heterogeneity and monitoring the maintenance of memory B lymphocytes.
Highlights
Immunization with recombinant hepatitis B virus (HBV) vaccine helps prevent the incidence of HBV infection and hepatitis B
The fragments captured and hydrolyzed by antigen presenting cells combine with major histocompatibility complex class II (MHC-II) molecules to form MHC-II antigen complexes, which are secreted to the cell surface and interact with CD4+ T helper cell surface antigen to stimulate CD4+ T cells activation and transformation into Th2 cells
Th2 cells react with B lymphocytes that can recognize hepatitis B surface antigen (HBsAg), and the activated B lymphocytes differentiate into plasma cells and secrete protective hepatitis B surface antibody (HBsAb)
Summary
Immunization with recombinant hepatitis B virus (HBV) vaccine helps prevent the incidence of HBV infection and hepatitis B. Since 1990s, China has introduced the immunization program for HBV vaccination, which has rapidly reduced the carriage rate of hepatitis B surface antigen (HBsAg). This program has greatly prevented HBV infection and reduced the number of new cases [1,2]. In China, the recombinant HBV vaccine commonly containing 5ug HBsAg. Following immunization in humans, the fragments captured and hydrolyzed by antigen presenting cells combine with major histocompatibility complex class II (MHC-II) molecules to form MHC-II antigen complexes, which are secreted to the cell surface and interact with CD4+ T helper cell surface antigen to stimulate CD4+ T cells activation and transformation into Th2 cells. B lymphocytes can act as antigen-presenting cells to directly recognize HBsAg, and interact with activated Th2 cells to produce HBsAb [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.