Abstract

In this paper, high-performance Zinc oxide (ZnO) thin-film transistors (TFTs) with bottom-gate (BG) structure and artificially location-controlled lateral grain growth have been prepared by low-temperature hydrothermal method. As the proper design of source/drain structure of ZnO/Ti/Pt thin films, the lateral grain growth can be artificially controlled in the desired location and the vertical grain boundary perpendicular to the current flow in the channel region can be reduced to single one. As compared with the conventional sputtered ZnO BG-TFTs, the proposed location-controlled hydrothermal ZnO BG-TFTs (W/L = 250 µm/10 µm) demonstrated the higher field-effect mobility of 6.09 cm2/V•s, lower threshold voltage of 3.67 V, larger on/off current ratio above 106, and superior current drivability, which can be attributed to the high-quality ZnO thin films with the reduced vertical grain boundaries in the channel region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.