Abstract

Abstract Southern pine (Pinus spp.) sapwood samples were impregnated with silica sols with known zeta potential and particle size distribution at various pH values (3, 5, 7, 9, 11 and 13) to produce wood-silica composites (WSiCs). The morphological and chemical properties of the composites were evaluated by scanning electron microscopy-energy dispersive X-ray (SEM-EDXA) and Fourier transform infrared (FTIR) spectroscopy. The overall performance of the composites was characterized by X-ray diffraction (XRD) and thermogravimetric (TG) analysis, and dynamic wettability tests, and their dimensional stability and surface hardness were also investigated as well. The pH value of the sols had a remarkable effect on the distribution of zeta potential and colloidal particle size, and on their penetration and distribution in the wood. The composites produced at pH 5 and pH 11 show relatively better impregnability and overall properties. In the first case the compatibility with the wood pH (ca. 5) is relevant, and at these pH values are the sol’s particle sizes low. Sols with pH around 13 resulted in inferior properties, such as increased water absorption, high thermal degradation and poor dimensional stability. This could be ascribed to wood degradation under high alkaline conditions. The results were discussed in view of the colloidal particle redistribution and the interaction between silica sol and wood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.