Abstract
Short-duration heavy rainfall causes severe urban flooding, threatening urban security and socio-economic development. The lower reaches of the Yangtze River are one of the regions with the highest frequency of short-duration heavy rainfalls in China. In this study, hourly stable isotope compositions in water vapor (δ18Ov and d-excessv) are analyzed for nine short-duration heavy rainfall events during the summer monsoon season (June to September) from 2013 to 2021 in Nanjing, eastern China. The circulation patterns that lead to these events can be divided into four types: tropical cyclone, low-pressure vortex, cold front, and western North Pacific subtropical high. During these events, δ18Ov is enriched, ranging from −18.8 ‰ to −13.7 ‰ with a pre-storm increasing trend. This is largely caused by strongly isolated meso- and small-scale convections and the close proximity of oceanic moisture sources. The d-excessv shows three different variation patterns during rainfall events: increasing, decreasing, and irregular fluctuations. They each correspond to the increasing contribution of terrestrial moisture from eastern China, proximal oceanic moisture from China’s offshore waters (including the South China Sea, East China Sea, and Yellow Sea), and the mixing influence of these two moisture sources. Multiple patterns of the d-excessv variations reflect both importance of terrestrial moisture from eastern China and oceanic moisture from China’s offshore waters for summer short-duration heavy rainfall events in eastern China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.