Abstract

Laboratory measurements were made of wall pressure fluctuations in separated and reattaching flows over a backward-facing step. An array of 32 microphones in the streamwise as well as the spanwise directions was utilized. The statistical properties of pressure fluctations were scrutinized. Emphasis was placed on the flow inhomogeneity in the streamwise direction. One-point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with the prior results. The peak frequency and the fall-off rate of autospectra demonstrated the shear layer-originated nature of pressure fluctuations. The coherences and wavenumber spectra in the streamwise and spanwise directions were indicative of the presence of dual modes in pressure; one is associated with the large-scale vortical structure in the low-frequency region and the other is the boundary-layer-like decaying mode in the high-frequency region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.