Abstract

The present scenario intended for the flow phenomena of micropolar fluid past an expanding/contracting surface is carried out to reveal the impact of a drag coefficient. Free convection due to the inclusion of the buoyant forces along with the radiative heat energy and non-uniform heat source/sink encourages the flow properties. The novelty of the present investigation is the use of variable plate conditions that affect the flow properties greatly. The transformation of the governing flow phenomena is obtained with the use of suitable similarity transformation and numerical treatment based upon Runge-Kutta fourth-order followed by shooting is imposed to get the solution of this transformed nonlinear system. Further, the simulation of the characterizing parameters is obtained and presented via graphs and tables. The major findings are; the enhancement in the axial velocity is characterized by the non-Newtonian behavior of the fluid and both the space and temperature dependent heat source favors for the augmentation in the fluid temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call