Abstract
The uneven spatial distribution of stations providing precipitable water vapor (PWV) observations in China hinders the effective use of these data in assimilation, nowcasting, and prediction. In this study, we proposed a complex network framework for exploring the topological structure and the collective behavior of PWV in the mainland of China. We used the Pearson correlation coefficient and transfer entropy to measure the linear and nonlinear relationships of PWV amongst different stations and to set up the undirected and directed complex networks, respectively. Our findings revealed the statistical and geographical distribution of the variables influencing PWV networks and identified the vapor information source and sink stations. Specifically, the findings showed that the statistical and spatial distributions of the undirected and directed complex vapor networks in terms of degree and distance were similar to each other (the common interaction mode for vapor stations and their locations). The betweenness results displayed different features. The largest betweenness ratio for directed networks tended to be larger than that of the undirected networks, implying that the transfer of directed PWV networks was more efficient than that of the undirected networks. The findings of this study are heuristic and will be useful for constructing the best strategy for the PWV data in applications such as vapor observational networks design and precipitation prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.