Abstract

In this study, investigations were carried out to evaluate the characteristics of ultrasonic vibration-assisted cutting of tungsten carbide material using a CNC lathe with CBN tool inserts. The cutting forces were measured using a three-component dynamometer, and the machined workpiece surfaces and chip formation were examined using a SEM. The experimental results showed that the radial force F x was much larger than the tangential force F z and axial force F y . The SEM observations on the machined workpiece surfaces and chip formation indicated that the critical condition for ductile mode cutting of tungsten carbide was mainly the maximum undeformed chip thickness when the tool cutting edge radius was fixed, that is, the ductile mode cutting can be achieved when the maximum undeformed chip thickness was smaller than a critical value. Corresponding to the chip formation mode (ductile or brittle), three types of the machined workpiece surfaces were obtained: fracture free surface, semi-fractured surface and fractured surface. It was also found that the cutting speed has no significant effect on the ductile chip formation mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.