Abstract

A compact ultra-wideband (UWB) bandpass filter (BPF) is presented for applications to short-range and high-speed wireless communication. Superconducting YBa2Cu3Oy (YBCO) stepped impedance resonators and coupled-line sections as inverter circuits are designed to form the basic filter structure. In the filter design, connected high-low stepped impedance microstrip lines construct the resonators, and open-stub lines are utilized to add return-loss poles in the pass-band and create transmission zeros in the lower/upper stop-band region. Simulation results show that the passband from 3.0 GHz to 8.6 GHz has a 3-dB fractional bandwidth of 99 percent, computed insertion losses better than 0.03 dB, and return losses greater than 15 dB. Rejection levels in the upper/lower stop-bands are better than 20 dB. For fabrication, high-Tc superconducting (HTS) YBCO films were deposited on double-side-polished 0.5-mm-thick MgO (100) substrates by a radio-frequency sputtering system. The filter was made out of patterned double-sided deposited YBCO films integrated with a gold-coated housing. The realized HTS UWB BPF shows a wide passband within 2.9-8.3 GHz with a maximum insertion loss of 0.88 dB. The measured results show good HTS UWB BPF performance. Moreover, the temperature-dependent frequency responses and the insertion loss can be described by the modified two-fluid-model-based formulas, indicating that the frequency shift and the increase in insertion loss for HTS BPF are both dominated by the temperature dependence of the magnetic penetration depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.