Abstract

We examine the deviation of the solar diurnal anisotropy vector from the 18 LT direction during the positive state of the solar cycle by assuming two anisotropies in free space. We use two detectors characterized by two linearly independent coupling functions. The median primary rigidity of response of these detectors covers the range 16 GV ≤ Rm ≤ 331 GV. Amplitude, direction, spectrum exponent, and the upper cut-off rigidity of each anisotropy have been calculated using the least-squares method over the time interval 1968–1988. This period covers a complete solar magnetic cycle. Only one anisotropy is dominant during each magnetic state of the solar cycle. The upper cut-off rigidity at which the dominant anisotropy vanishes varies between 50–250 GV. The direction of the dominant anisotropy vector points toward the 18 LT direction during the negative state of the solar cycle and toward earlier hours than 18 LT during the positive state. The non-dominant anisotropy is characterized by very high upper cut-off rigidity and sharper energy spectral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call