Abstract

ObjectivesThe study aimed to examine the diverse bioactivity of lipooligosaccharide extracted from T. denticola cultured in the presence of hemin and quorum-sensing inhibitor. DesignT. denticola was cultured in the presence or absence hemin or 2(5 H)-furanone, and lipooligosaccharide from T. denticola cultured in various conditions was extracted using an extraction kit. To investigate bioactivity of the lipooligosaccharide, human gingival fibroblasts (HGFs) were treated with the extracted lipooligosaccharide in the presence or absence of Tannerella forsythia lipopolysaccharide. The induction of cytokine expressions was investigated by real-time RT-PCR and ELISA, and the signaling pathway was examined by immunoblotting. To investigate antagonistic mechanisms of the lipooligosaccharide, HGFs were cotreated with fluorescence-labeled T. forsythia lipopolysaccharide and the extracted lipooligosaccharide. Binding of T. forsythia lipopolysaccharide to the cell was analyzed by a flow cytometer. ResultsLipooligosaccharide induced a low level of cytokine expression at high concentration of hemin or 2(5 H)-furanone. Lipooligosaccharide extracted from T. denticola cultured in higher concentration of hemin and 2(5 H)-furanone had a greater inhibitory effect on induction of cytokine expression by T. forsythia lipopolysaccharide. Further, lipooligosaccharide inhibited the activation of NF-κB and mitogen-activated protein kinase signaling pathways by T. forsythia lipopolysaccharide. Lipooligosaccharide inhibited the binding of T. forsythia lipopolysaccharide to HGFs in the presence of CD14 and LBP. ConclusionsThe characteristics of T. denticola lipooligosaccharide may be altered by bacterial communication and host factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call