Abstract

Many studies have examined the relationship between cognition, and the cingulum and uncinate fasciculus (UF). In this study, diffusion tensor tractography (DTT) was used to investigate the correlation between fractional-anisotropy (FA) values and the number of fibers in the cingulum and UF in patients with and without cognitive impairment. The correlation between cognitive function, and the cingulum and UF was also investigated. Thirty patients (14 males, age = 70.68 ± 7.99 years) were divided into a control group (n = 14) and mild-cognitive-impairment (MCI) group (n = 16). The Seoul Neuropsychological Screening Battery (SNSB) and DTT were performed to assess cognition and bilateral tracts of the cingulum and UF. The relationship between SNSB values and the cingulum and UF was analyzed. The number of fibers in the right cingulum and right UF were significantly different between the two groups. The MCI group showed thinner tracts in both the cingulum and UF compared to the control group. A significant relationship was found between the number of fibers in the right UF and delayed memory recall. In conclusion, memory loss in MCI was associated with a decreased number of fibers in the right UF, while language and visuospatial function were related to the number of fibers in the right cingulum.

Highlights

  • The uncinate fasciculus (UF) connects the frontal and temporal lobes

  • Memory loss in MCI was associated with a decreased number of fibers in the right UF, while language and visuospatial function were related to the number of fibers in the right cingulum

  • This study examined the relationship between cognitive function and Diffusion tensor tractography (DTT) parameters in the cingulum and UF in patients with MCI compared to controls

Read more

Summary

Introduction

The cingulum, being the largest fiber bundle, runs from the orbitofrontal cortex along the dorsal aspect of the corpus callosum to the temporal lobe [1,2]. The cingulum affects cognitive functions such as attention, memory, and motivation [5,6,7,8]. Diffusion tensor imaging (DTI) using a magnetic-resonance-imaging (MRI) technique provides information on the white-matter microstructure of the brain with regard to fiber connectivity and integrity [2]. Fractional anisotropy (FA) quantifies the preferential direction of water-molecule diffusion and gives an assessment of white-matter integrity [2]. It does this in the range of zero to one, where FA

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call