Abstract

Controlling the amount of retained austenite is a concern in austempered ductile iron formation. Retained austenite has a strong influence on austempered ductile iron properties, such as hardness and wear resistance. In this research, the characteristics of the transformation of retained austenite were investigated as a function of the number of tempering cycles. The hardness of the austempered ductile iron samples was measured, and the specific amount of retained austenite was analyzed by x-ray diffraction (XRD). Wear tests were conducted on a ball-on-flat sliding fixture. The tempering process was found to have no effect on the hardness of the austempered ductile iron samples. This may be due to retained austenite being partially converted into brittle quenched martensite during the tempering process. However, tougher tempered martensite was also formed from existing martensite. The two effects seemed to offset each other, and no significant differences occurred in overall hardness. XRD analysis showed that under the same austempering temperature and holding time, the amount of retained austenite decreased with additional tempering cycles. Also, with the same holding time and tempering cycles, less retained austenite was contained in the matrix at higher austempering temperatures. This was due to more high carbon content austenite and needle-like ferrite being present in the austempered ductile iron matrix. In addition, tempered austempered ductile iron exhibited significantly higher wear resistance as compared to traditionally treated ductile iron.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call