Abstract

The detailed evolutionary processes of the tip leakage flow/vortex inside the rotor passage are still not very clear for the difficulties of investigating of them by both experimental and numerical methods. In this paper, the flow fields near the rotor tip region inside the blade passage with two tip gaps, 0.5% and 1.5% blade height respectively, were measured by using stereoscopic particle image velocimetry (SPIV) in a large-scale low speed axial compressor test facility. The measurements are conducted at four different operating conditions, including the design, middle, maximum static pressure rise and near stall conditions. In order to analyze the variations of the characteristics of the tip leakage vortex (TLV), the trajectory, concentration, size, streamwise velocity, and the blockage parameters are extracted from the ensemble-averaged results and compared at different compressor operating conditions and tip gaps. The results show that the formation of the TLV is delayed with large tip clearance, however, its trajectory moves much faster in an approximately linear way from the blade suction side to pressure side. In the tested compressor, the size of the tip gap has little effects on the scale of the TLV in the spanwise direction, on the contrary, its effects on the pitch-wise direction is very prominent. Breakdown of the TLV were both found at the near-stall condition with different tip gaps. The location of the initiation of the TLV breakdown moves downstream from the 60% chord to 70% chord as the tip gap increases. After the TLV breakdown occurs, the flow blockage near the rotor tip region increases abruptly. The peak value of the blockage effects caused by the TLV breakdown is doubled with the tip gap size increasing from 0.5% to 1.5% blade span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call