Abstract

In this paper, we consider a ( $$2+1$$ )-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada (gCDGKS) equation, which is a higher-order generalization of the celebrated Kadomtsev–Petviashvili (KP) equation. By considering the Hirota bilinear form of the CDGKS equation, we study a type of exact interaction waves by the way of vector notations. The interaction solutions, which possess extensive applications in the nonlinear system, are composed by lump wave parts and soliton wave parts, respectively. Under certain conditions, this kind of solutions can be transformed into the pure lump waves or the stripe solitons. Moreover, we provide the graphical analysis of such solutions in order to better understand their dynamical behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.