Abstract

Reaction rate constants of (−)-epigallocatechin gallate (EGCG) and (+)-catechin with the hydroxyl radical (·OH) were measured using the rapid flow ESR method. The rate constant of EGCG was larger twice than that of the pyrogallol or gallic acid, they are the model compounds of the B ring of EGCG. It was explained by the quantum-chemical calculation of the bond dissociation energy (BDE) of the phenolic hydroxyl group (ϕ-OH) and the spin densities of EGCG radical. The energy of the EGCG radical was lowered by the hydrogen bonding between the radical part on the B ring and the hydroxyl group on the gallate group, leading to the lowering of BDE. Linear relationship between the relative activation energy and BDE of all the polyphenols measured was observed (Evans-Polanyi equation), showing that the reaction with ·OH occurs in the same manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.